

Welcome to the Kiosc documentation!

Kiosc is a web application to control Docker containers that run a webserver.

It was conceived to facilitate presenting analysis results interactively (but is not limited to that)
by running Docker images that are constricting any application that offers a web interface.
Any image can be loaded, and Kiosc manages the access to the web interface of the application.

What Kiosc is and what it is not

Kiosc is a web interface for

	loading Docker images and creating containers from it,

	controlling the state of Docker containers,

	controlling access to containers based on the user management provided by SODAR,

	providing access to the app running in a container.

Kiosc is NOT

	a tool to create Docker images,

	for running Docker images without webserver (you can do that, but you won’t benefit from it),

	for directly loading or sharing data (this has to be managed by the Docker image).

Note

You can find the official version of this documentation at
readthedocs.io [https://kiosc.readthedocs.io/en/latest/].
If you view these files on GitHub, beware that their renderer does not
render the ReStructuredText files correctly and content may be missing.

Indices and tables

	Index

	Search Page

Overview

[image: Logo]

General Idea

Kiosc was developed to share analysis results with customers
and collaborators that are best displayed using an app – an interactive
client-side tool that is based on a webserver. The idea was to bundle the
webserver in a custom-build Docker image with an application of
choice. Upon starting, the container loads the data by setting the
environment variables or passing a parameter to the command when starting
the Docker container.

Kiosc takes the role of providing functionality to create, configure,
manage and control Docker containers from such Docker images, allowing to
set up the environment variables or the start command of the container, and
to give access to the web interface of the container using a reverse proxy.
Technically, Kiosc can be used to pull and start any Docker image, however,
one would not benefit from that as it is specifically designed for Docker
images hosting a web server.

A typical workflow scheme is then as follows:

	Kiosc launches a previously configured docker container

	The container downloads and initializes necessary data objects and starts a web server on a
specified port serving the preconfigured app

	Kiosc allows the access to the webserver via reverse proxy.

	Users can navigate to the app served by the container from the Kiosc
entry page.

SODAR Universe

Kiosc is based on the SODAR core framework and be linked to an upstream SODAR instance
to receive projects, users and role assignments. Based on the project information,
Docker containers can be created from available Docker images and shared with collaborators
and customers.

Technical Description

	Docker environment

	Technical description of networks

	Reverse proxy

Installation

We ship Kiosc as a Docker container, and provide Docker compose file to start also other required containers.
This part describes how to use Kiosc as a Docker container, and also the manual is based on this.

Disclaimer: It is possible to run Kiosc as is (mode host), but this requires additional work to set up the database
and scheduler. This is not described in this manual. Also, this has impact on how the Docker containers the user creates
are organized and presented. This is also not described in this manual.

The Kiosc Docker container is served via Github Container Registry (gchr).

Docker compose

Set up the Docker compose by cloning the repository:

$ git clone https://github.com/bihealth/kiosc-docker-compose.git
$ cd kiosc-docker-compose

Initialize the folder structure required. Among others, the database will be stored in there, such it is available
after restarting the container:

$ bash init.sh

Copy the env.example file to .env:

$ cp env.example .env

Here you can change Kiosc and Django parameters. Most of them are set to reasonable defaults, but changing the
DJANGO_SECRET_KEY is a good idea:

DJANGO_SECRET_KEY=CHANGEMEchangemeCHANGEMEchangemeCHANGEMEchangemeCH

When done, start the Docker containers:

$ docker-compose up

The Kiosc installation can now be reached by accessing localhost [https://localhost] with your browser.

Configuration

Kiosc can be configured via environment variables. Docker compose can digest a .env file. It is a good idea to
leave the values as they are.

The environment file could look like this:

Postgres configuration --

POSTGRES_USER=kiosc
POSTGRES_PASSWORD=password
POSTGRES_DB=kiosc
POSTGRES_HOST=postgres

Kiosc configuration ---

DATABASE_URL="postgresql://${POSTGRES_USER}:${POSTGRES_PASSWORD}@${POSTGRES_HOST}/${POSTGRES_DB}"

DJANGO_ALLOWED_HOSTS="*"
DJANGO_SECRET_KEY="CHANGEMEchangemeCHANGEMEchangemeCHANGEMEchangemeCH"
DJANGO_SETTINGS_MODULE="config.settings.production"

PROJECTROLES_SITE_MODE=SOURCE

CELERY_BROKER_URL="redis://redis:6379/0"

KIOSC_SERVER_VERSION=main-0
KIOSC_NETWORK_MODE=docker-shared
KIOSC_DOCKER_NETWORK=kiosc-net
KIOSC_DOCKER_WEB_SERVER=kiosc-web
kIOSC_DOCKER_ACTION_MIN_DELAY=1
KIOSC_DOCKER_MAX_INACTIVITY=1
KIOSC_DOCKER_ACTION_MIN_DELAY=7
KIOSC_EMBEDDED_FILES=1

Note that setting PROJECTROLES_SITE_MODE=TARGET requires an upstream SODAR instance
that is running in SOURCE mode and that the Kiosc instance is registered to.
If no SODAR instance is available or connecting Kiosc to the SODAR instance is not intended,
set the PROJECTROLES_SITE_MODE=SOURCE. Further description of the SOURCE/TARGET
mode can be found in the SODAR Core documentation [https://sodar-core.readthedocs.io/en/latest/app_projectroles_usage.html#remote-projects].

Optionally the LDAP can be configured with up to two LDAP servers:

LDAP configuration --

ENABLE_LDAP=1
AUTH_LDAP_SERVER_URI=...
AUTH_LDAP_BIND_PASSWORD=...
AUTH_LDAP_BIND_DN=...
AUTH_LDAP_USER_SEARCH_BASE=...
AUTH_LDAP_USERNAME_DOMAIN=...
AUTH_LDAP_DOMAIN_PRINTABLE=...

ENABLE_LDAP_SECONDARY=1
AUTH_LDAP2_SERVER_URI=...
AUTH_LDAP2_BIND_PASSWORD=...
AUTH_LDAP2_BIND_DN=...
AUTH_LDAP2_USER_SEARCH_BASE=...
AUTH_LDAP2_USERNAME_DOMAIN=...
AUTH_LDAP2_DOMAIN_PRINTABLE=...

If the KIOSC_ environment variables are not set, Kiosc selects the defaults as stated
in the following table.

	Environment variable

	Default

	Description

	KIOSC_NETWORK_MODE

	host

	Can be host or docker-shared. Indicates whether installation runs in a Docker environment or not.

	KIOSC_DOCKER_NETWORK

	kiosc-net

	Name of the Docker network for the users Docker containers.

	KIOSC_DOCKER_WEB_SERVER

	kiosc-web

	Name of the web server Docker container.

	KIOSC_DOCKER_ACTION_MIN_DELAY

	1

	Min delay in seconds for Docker container actions.

	KIOSC_DOCKER_MAX_INACTIVITY

	7

	Max threshold for inactive running Docker containers in days.

	KIOSC_EMBEDDED_FILES

	True

	Enable the feature to upload small files to Kiosc that can be served to the Docker containers.

Interface

When accessing the Kiosc web interface, one is greeted
with the Kiosc logo and a login form. You need to have an
account with Kiosc or the LDAP must be configured to be
able to log in with your institute account. Approach your
system administrator about that matter if you are unsure.

[image: Login]
Once logged in, you will see an overview of all the projects
you are assigned to, alike SODAR. If you do expect to have
access to a project you do not have access to, ask the leader or
delegate of that project to grant you access to that project.
If the Kiosc instance is linked to a SODAR instance, the access
is set in SODAR and must then be synchronized to Kiosc by the
administrator.

[image: Home]
To be able to access the Kiosc apps, click on a project. On the
left-hand side you will have access to multiple apps, three
of them are of interest:

	Containers for creating and controlling Docker containers.

	Container Template for creating templates for Docker containers.

	Small Files for uploading smaller files that the containers can then access.

[image: Project overview]
Additionally, in the top-right corner is a drop-down menu for account settings and
site apps. This gives access to the site-wide container template app. This hosts
container templates that are accessible site-wide and not project-wide.

[image: Settings menu]

Roles

Kiosc provides the same roles as SODAR Core as it is based on this framework.
However, this section will clarify what each role is allowed to do within Kiosc.

Contents

	Roles

	Containers

	Container Templates

	Project-wide

	Site-wide

Containers

	Role

	Create/Update

	Delete

	Start

	Stop

	(Un)pause

	View

	Administrator

	OK

	OK

	OK

	OK

	OK

	OK

	Owner

	OK

	OK

	OK

	OK

	OK

	OK

	Delegate

	OK

	OK

	OK

	OK

	OK

	OK

	Contributor

	OK

	OK

	OK

	OK

	OK

	OK

	Guest

	
	
	(OK)*

	
	
	OK

* Guests can’t start the container directly, but do so indirectly by requesting to view a not running container.

Container Templates

Project-wide

	Role

	Create/Update

	Delete

	Copy*/Duplicate

	View

	Administrator

	OK

	OK

	OK

	OK

	Owner

	OK

	OK

	OK

	OK

	Delegate

	OK

	OK

	OK

	OK

	Contributor

	OK

	OK

	OK

	OK

	Guest

	
	
	
	OK

* Copy project-wide or site-wide templates.

Site-wide

	Role

	Create/Update

	Delete

	Duplicate

	View

	Administrator

	OK

	OK

	OK

	OK

	Owner

	
	
	
	OK

	Delegate

	
	
	
	OK

	Contributor

	
	
	
	OK

	Guest

	
	
	
	OK

Cookbook

Contents

	Cookbook

	Guest accessing the web interface of a container

	Create a container running …

	Shiny (using environment variables)

	Dash (using environment variables)

	seaPiper

	cellxgene (using a command)

	cellxgene (using a command with small files)

	ScElvis (using a command and environment variables)

Guest accessing the web interface of a container

You are a guest of a project. You can list the containers
of the project, and access the details of each container. You can’t
change the status of a container, except indirectly by viewing
a container that is not running. Probably you like to access
the web interface provided by the container.

To proceed, click on a project and then select the Container app.
This will display a list of all containers in the project. On the right-hand
side of each container is a button with an eye icon. The button might be
either gray-outlined with a crossed-out eye, or with a blue background
with an open eye. The crossed-out eye indicates that the container is
not running and this will also be reflected in the state. The blue open
eye indicates that the container is available. No matter the state,
clicking the icon will open the web interface provided by the container.
The difference is that in the crossed-out state Kiosc tries to start the
container before accessing the web interface which might take some time
while in the running state the web interface will be displayed immediately.

Create a container running …

To create a container switch to the Containers app

[image: Container app]
and select Create Container. This will be the starting point
for the following tutorials.

[image: Project overview]
After the creation of the container you will be redirected
the details of the container. The state will be set to
initial which indicates that there is the container object
but no actual Docker container (yet). You can find the operations menu (cog icon)
on the top right of the details page. Open the dropdown
menu by clicking the cog icon and select Start, or click
the crossed-out eye icon to start and access the container directly.

Shiny (using environment variables)

[image: Shiny proxy]
For this tutorial we provide you with a pre-build
Docker image with a Shiny application [https://github.com/bihealth/kiosc-example-shiny/].
Use the linked repository as a base to create your own Docker image.

This example sets up a simple Shiny application loading the popular iris dataset.
The data set is loaded by setting the dataset variable in the environment.
Fill out the following fields and click Create:

	Title

	Set a unique title that helps you identify the container easily.

	Repository

	ghcr.io/bihealth/kioscshinytest

	Tag

	latest

	Container Port

	8080

	Environment

	{"title": "Kiosc Shiny App example", "dataset": "iris"}

The Environment field should contain a JSON object literal [https://www.w3schools.com/js/js_json_objects.asp],
which corresponds to a Python dictionary with the exception that only double quotes are allowed, or nothing.

The value in the Environment field will be transformed and passed to the environment of
the container. In the above example, the Docker container will hold two environment variables.
Imagine that inside the container the following lines will be performed upon start:

$ export title="Kiosc Shiny App example"
$ export dataset=iris

Dash (using environment variables)

[image: Dash proxy]
For this tutorial we provide you with a pre-build
Docker image with a Dash application [https://github.com/bihealth/kiosc-example-dash/].
Use the linked repository as a base to create your own Docker image.

In this example we are running a Dash application. As we are behind
a reverse proxy, the Dash application needs some tweaks to make it load
all scripts and stylesheets into the container when started. The Dash
application was extended by accepting an environmental variable named
PUBLIC_URL_PREFIX, and for this to work, you have to set up this
environment variable and set it to the value __KIOSC_URL_PREFIX__.
This acts as a place holder that is substituted with the path to the
container how it is known to the outside. Fill out the following fields and click Create:

	Title

	Set a unique title that helps you identify the container easily.

	Repository

	ghcr.io/bihealth/kiosc-example-dash

	Tag

	main-0

	Container Port

	8050

	Environment

	{"PUBLIC_URL_PREFIX": "__KIOSC_URL_PREFIX__"}

The Environment field should contain a JSON object literal [https://www.w3schools.com/js/js_json_objects.asp],
which corresponds to a Python dictionary with the exception that only double quotes are allowed, or nothing.

The value in the Environment field will be transformed and passed to the environment of
the container. In the above example, the Docker container will hold two environment variables.
Imagine that inside the container the following lines will be performed upon start:

$ export PUBLIC_URL_PREFIX=containers/proxy/abcdef123...

seaPiper

[image: seaPiper proxy]
For this tutorial we provide you with a pre-build
Docker image with a seaPiper application [https://github.com/bihealth/kiosc-seapiper-demo/].
Use the linked repository as a base to create your own Docker image.

seaPiper is based on Shiny. Fill out the following fields and click Create:

	Title

	Set a unique title that helps you identify the container easily.

	Repository

	ghcr.io/bihealth/kiosc-seapiper-demo

	Tag

	latest

	Container Port

	8080

cellxgene (using a command)

[image: cellxgene proxy]
This example takes a publicly available container and passes a command that is run
when starting the container. In this case, the cellxgene application is started
immediately when running the container. The data is loaded by passing the data
URL to the command. Fill out the following fields and click Create:

	Title

	Set a unique title that helps you identify the container easily.

	Repository

	quay.io/biocontainers/cellxgene

	Tag

	1.0.0--pyhdfd78af_0

	Container Port

	8050

	Command

	cellxgene launch https://cellxgene-example-data.czi.technology/pbmc3k.h5ad -p 8050 --host 0.0.0.0 --verbose

cellxgene (using a command with small files)

[image: cellxgene proxy]
This example is the same as above but using a file uploaded to Kiosc.
A command to copy-and-paste can’t be provided as the link to the file
depend on the UUID that is randomly created. To get the file into Kiosc,
download the file from the official server and upload it to Kiosc:

	Download example data [https://cellxgene-example-data.czi.technology/pbmc3k.h5ad].

	Go to a Kiosc project and select the Small Files app.

	Upload the pbmc3k.h5ad file. It is now available during container creation.

Now continue with the container creation. To make use of the uploaded file, when
inserting the command, place the cursor at the mentioned position in the command,
select the file and click Insert.

[image: Insert file]
This will place a link at the cursor position.

[image: Inserted file]

	Title

	Set a unique title that helps you identify the container easily.

	Repository

	quay.io/biocontainers/cellxgene

	Tag

	1.0.0--pyhdfd78af_0

	Container Port

	8050

	Command

	cellxgene launch <PLACE_CURSOR_HERE_BEFORE_INSERTING_FILE> -p 8050 --host 0.0.0.0 --verbose

	Files

	/pbmc3k.h5ad

ScElvis (using a command and environment variables)

[image: ScElvis proxy]
This example sets up the ScElvis. ScElvis is based on Dash.
For this to work, you have to set up two environment variables,
SCELVIS_URL_PREFIX helps the application alter the URL path
to load scripts and style sheets into the container and
SCELIVS_DATA_URL sets the data that is to be loaded into the
container. Fill out the following fields and click Create:

	Title

	Set a unique title that helps you identify the container easily.

	Repository

	ghcr.io/bihealth/scelvis

	Tag

	v0.8.6

	Container Port

	8050

	Environment

	{"SCELVIS_URL_PREFIX": "__KIOSC_URL_PREFIX__", "SCELVIS_DATA_SOURCES": "https://cellxgene-example-data.czi.technology/pbmc3k.h5ad"}

	Command

	scelvis run

The Environment field should contain a JSON object literal [https://www.w3schools.com/js/js_json_objects.asp],
which corresponds to a Python dictionary with the exception that only double quotes are allowed, or nothing.

The value in the Environment field will be transformed and passed to the environment of
the container. In the above example, the Docker container will hold two environment variables.
Imagine that inside the container the following lines will be performed upon start:

$ export SCELVIS_URL_PREFIX=containers/proxy/abcdef123...
$ export SCELVIS_DATA_SOURCES=https://cellxgene-example-data.czi.technology/pbmc3k.h5ad

In addition to the user defined variables, the title, description and
container_port are also exposed as environment variables to the Docker container
(as TITLE, DESCRIPTION and CONTAINER_PORT respectively):

$ export TITLE="Some unique title"
$ export DESCRIPTION="Some description"
$ export CONTAINER_PORT=8050

Containers

Container objects hold the information to create and afterwards to control the underlying
Docker containers. All information the user enters is used during the creation of the
container (which happens when the container is started). They also hold information
about the current state and include the logs reported by any process associated
with the container.

Contents:

	 Overview

	 Create
	Container templates

	Environment

	Environment secret keys

	Container path

	Timeout

	Heartbeat URL (inactive)

	Files

	Max retries

	Inactivity threshold

	 Details
	Initial container

	Running container

	Fields
	Environment & Environment Secret Keys

	State

	Last action

	Date of latest Docker log

	Logs

	 Access & Controls
	Access (via Proxy)

	Controls
	Start

	Stop

	Pause

	Unpause

	Restart

	Update

	Delete

Overview

Find the Containers icon in the left-hand menu to open the Container
app. This will list all available containers and offers the menus to
create new containers, control and delete containers and show details including
its logs.

[image: Container app]

Create

Contents

	Create

	Container templates

	Environment

	Environment secret keys

	Container path

	Timeout

	Heartbeat URL (inactive)

	Files

	Max retries

	Inactivity threshold

Click the Create Container button to enter the form for creating
a new container object. This does not create a Docker container yet but
only gathers information. The actual Docker container is created when
starting the container.

[image: Create container]
Fill in at least the mandatory fields, marked with a star (*). Some of
them are pre-filled with a reasonable default value. Change only if required.
Others like Title, Repository, Tag and Container Port have to
be set by the user. Below is a detailed description of each form field. In the example
screenshots, we set up a Shiny app.

Fill in a reasonable title that helps you identify the container. The title must be
unique. A description is helpful, but not required.

[image: Create container]
Fill in the repository, tag and container port.

[image: Create container]
Click the Create button to create the container object.
This does not create the actual Docker container yet.

[image: Create container]

Container templates

To make use of the container templates, select a template from the
top-hand dropdown menu and click Get. This will populate all form fields
that are set in the template with you create form. Anything you already
entered will be overwritten. The prefix [Site-wide] or [Project-wide]
indicates whether this template is either a site-wide or a project-wide
template.

Environment

Environment variables can be specified using a JSON dictionary.
Top-level keys in the dictionary become the environmental variables visible to the app launched
in the container:

{
 "ID": "My container",
 "LIST": ["A", "B", "C"]
}

Given the above example, two environment variables will be defined: ID
and LIST. The contents of ID will be My container; the contents of
LIST will be ['A', 'B', 'C']. Note that the double quotes will be
changed to single quotes.

These variables are available to the web app of the container,
and can be used to specify e.g. a data source or other parameters
for the container web app.

In addition to the user defined variables, the title, description and
container_port are also exposed as environment variables to the Docker container
(as TITLE, DESCRIPTION and CONTAINER_PORT respectively).
The complete list looks like this:

{
 "ID": "My container",
 "LIST": ["A", "B", "C"],
 "TITLE": "Some title",
 "DESCRIPTION": "Some description",
 "CONTAINER_PORT": 8080,
}

Environment secret keys

Environment secret keys is a comma-separated list of sensitive keys to environment variables that have to
have a corresponding key defined in the JSON dictionary in the environment field.
Those variables will be masked when editing them or viewing the details of the container.

Container path

The container path is the folder structure appended to the web address of
the container.

Timeout

The timeout is set in seconds and is set as the time limit for any Docker
action (start/stop/etc..) to complete.

Heartbeat URL (inactive)

The heartbeat URL can be used to check whether the container app runs
correctly. (Feature is currently inactive)

Files

This dropdown provides the files that were uploaded to Kiosc via the Small Files
app to the project the current container is created in.

To get the internal link to the file the container then can access, click Insert
and the link will be appended to the command field.

Max retries

Maximal number of retries for an action in case of failure. If an action
(e.g. starting a container) fails, it will be retried this many times.

Inactivity threshold

Number of days the container is allowed to run without proxy access.
If this threshold is hit, the container will be stopped.

Details

Click on the title of a container to access its details and the logs.
You will also be forwarded to the details once you created a container object.
A detailed description of all the fields can be found below.

Contents

	Details

	Initial container

	Running container

	Fields

	Environment & Environment Secret Keys

	State

	Last action

	Date of latest Docker log

	Logs

Initial container

When you created a container, the detail page will provide
you with information about the container object. Please note
that the container is still in initial state and not running yet.
Thus, the button to access the proxy (eye icon) is not active.

[image: Details of an initial container]
In the bottom of the page the logs are displayed. In this case
the logs only contain one entry, indicating that the object
has been created.

[image: Details of an initial container, showing logs]
To start the container, open the operator menu located on the
right-hand side of the title and click the Start item. The Docker container
will be created and started. This menu also provides you with the
options to edit (Update) or Delete the container.

[image: Details of an initial container, showing operator menu]

Running container

Once the container is running, the detail page for the container
changes. The operator menu will change its entries, the button
to access the proxy server with the eye icon will turn blue and
the state of the container will be set to running.

[image: Details of a running container]
The logs will be updated and now contain the logs coming
from the Docker container.

[image: Details of a running container, showing logs]
When a user accesses the container via the proxy URL (which
is triggered by clicking the button with the eye icon),
this will also be displayed in the logs. Look out for an entry
that is provided by (Proxy), starting with Accessing [...].

[image: Details of a running container, proxy access]

Fields

Environment & Environment Secret Keys

Names of sensitive environment variables can be entered in the Environment secret keys field.

If you have set an environment and registered environment_secret_keys,
the value of the corresponding items in the environment dictionary are displayed in Kiosc
as <masked>, indicating that they are available to the system but
are not displayed for security reasons. However, they will still be visible
in plain in the container environment.

State

The current state is presented and highlighted:

	initial, indicating that the database object has been created but no actual Docker container exists yet.

	running

	failed, indicating that something went wrong

	exited

	paused

If there is a small bell icon next to the state, this indicates
that the last user action and the current state of the Docker container
do not match.

Last action

The last action performed on the container of any user is displayed, if available.
If there is an inconsistency found between the actual Docker state and the last
user action (indicated by the bell icon right to the state), a cron job running
every few minutes tries to perform the last known issued user action. The first
number next to the action is a counter, indicating how many times it tried to re-perform the action,
with the maximal limit indicated by the second number.

Date of latest Docker log

When a Docker log has been fetched in the past, this date indicates the
timestamp of the latest Docker log and synchronisation of the Docker
state. Docker logs are not displayed immediately in the log file but
fetched by a background process every few minutes. This line is missing
when there are no fetched Docker logs.

Logs

The logs will update themselves every half minute. As described above, Docker logs
are also fetched only every few minutes from the Docker container, thus there can
be a bit of latency until logs are displayed.

The log window combines logs from multiple sources. The structure of a log entry is:

[YYYY-MM-DD HH:MM:SS <LOG_LEVEL> <USER>] (<PROCESS>) <MESSAGE>

For example:

[2021-09-08 22:57:26 INFO anonymous] (Task) Syncing last registered container state (running) with current Docker state (exited)

Currently the following sources can contribute to the log:

	Task: Logs reported by automatically running background tasks. Usually they are issued by anonymous.

	Docker: Logs reported by Docker for this container. They are fetched every half minute, so they might not appear immediately.

	Action: Any action the user issues on the container.

	Proxy: Issued when accessing the proxy.

	Object: Issued when changes in the database object are made that represents the Container in Kiosc.

Access & Controls

Contents

	Access & Controls

	Access (via Proxy)

	Controls

	Start

	Stop

	Pause

	Unpause

	Restart

	Update

	Delete

Access (via Proxy)

The web application running inside of the container can be accessed
when clicking the button with the eye icon. A grey and crossed-out
eye indicates that the container is currently not running. A click
on the button will start the container and access the web application
afterwards.

[image: Proxy button when container is not running]
A blue button with an eye icon indicates that the container is running.
The access will happen immediately when clicking the button.

[image: Proxy button when container is running]

Controls

The Controls dropdown menu (cog icon) comprises
multiple actions that can be issued on a container,
displayed depending on the state the container is currently in.
In the details page this menu is presented by the cog icon + Controls,
while in the list this is presented by the cog icon only.

The Controls button on the details page:

[image: Controls button on the container details page]
The Controls button on the container list:

[image: Controls button on the container list page]
When a container is stopped, the selection includes the actions
Start, Update and Delete, given the permissions.

[image: Control menu when container is not running]
When a container is running, the selection includes the actions
Stop, Pause, Restart, Update and Delete,
given the permissions.

[image: Control menu when container is not running]

Start

Create a container from a Docker image and start it. If the image isn’t
cached yet, it is pulled from the specified repository. An existing
container is always wiped before performing the starting action.

Internally, the following cadence is performed:

docker rm
docker pull
docker create
docker run

The state should be running when performed successfully.

Stop

Stop a running Docker container. Only available when Docker container state is reported as running.

Internally, a docker stop is performed.

The state should be exited when performed successfully.

Pause

Pause a running Docker container. Only available when Docker container state is reported as running.

Internally, a docker pause is performed.

The state should be paused when performed successfully.

Unpause

Unpause a paused Docker container. Only available when Docker container state is reported as paused.

A docker unpause is performed.

The state should be running when performed successfully.

Restart

Restart a running container. Only available when Docker container state is reported as running.

Internally, the following cadence is performed:

docker stop
docker rm
docker pull
docker create
docker start

(It’s NOT a docker restart as the name would suggest.)

The state should be running when performed successfully.

Update

This leads to the form to update the setting of the current container.
Please note that values of items in the environment dictionary are
displayed as <masked> if listed in the environment_secret_keys.
When left as <masked>, the value itself will not change. To set a
new value, simply change the value.

If the Docker container state is reported as running, a restart as
described above will be performed to account for the changes.

Delete

This makes sure that the associated Docker container is not running
and stops it if necessary, and deletes the Docker container as well
as the database object. This action can’t be undone.

[image: Confirmation for deleting a container]

Container Templates

Container templates were conceived to facilitate the creation of containers
by offering default settings that can be copied during the creation of an
actual container. Container templates themselves can be duplicated and copied
to different projects. They do exist as a project-wide for every user, and
as site-wide only available for the administrators.

Contents:

	 Overview
	Site-wide templates

	 Create

	 Details

	 Copy

	 Controls
	Update

	Duplicate

	Delete

Overview

Find the Container Templates icon in the left-hand menu to open the Container Template
app. This will list all available container templates and offers the menus to
create, update and delete templates.

[image: Project-wide Container Templates app]
Note that the new templates will be visible in all your projects on the
KIOSC site.

[image: Empty container template overview]

Site-wide templates

The site-wide container templates can be found in the settings menu.

[image: Site-wide Container Templates app]
The difference between project-wide templates and site-wide templates
is that only administrators can create site-wide templates, and as the
name suggests are available on the entry site, i.e. can be used in every
project. Project-wide templates are created in a specific project but
can be accessed in every project the user has access to.

Create

Click Create to enter the form to create a template.

[image: Overview create container template]
The only mandatory field is Title, which is also unique.
Everything else can be left out,
although some values should be set as the template makes no sense otherwise.

[image: Container template creation (1/2)]
Create the template by clicking Create.

[image: Container template creation (2/2)]
In the overview, the container template will be listed.

[image: Overview container template]

Details

Click on the title of a container template in the overview to enter the details of a container template.
These are the same details that need to be provided when creating a container.

[image: Container template details]

Copy

Select a template from the top-hand dropdown menu and click Copy to make
a copy of the selected template.

[image: Container template details]
A new template with the same title will show
up in the list, only that the title is extended by (Copy).

[image: Container template details]
In the dropdown menu all templates are listed the current user has access to,
plus the site-wide templates. This enables the user to copy templates from other projects.

Controls

The Controls dropdown menu (cog icon) comprises
multiple actions that can be issued on template.

[image: Control menu of a container template]

Contents

	Controls

	Update

	Duplicate

	Delete

Update

Click this to enter the update form of the template.

Duplicate

Duplicate is similar to the Copy action, only that you will make a copy or duplicate
of the template this menu is referring to. A new template with the same title will
show up in the list, only that the title is extended by (Duplicate).
The result is otherwise the same as when the user would make a copy of that template
with the Copy action. This means it is just a shortcut to copy templates around
within a template, while the Copy action is designed to copy templates across projects
or to copy site-wide templates.

[image: Container template details]

Delete

Delete deletes the template. This action needs a confirmation and can’t be undone.

[image: Confirm container template deletion]

Small Files

Overview

Kiosc has activated an app provided by SODAR Core that allows the
user to upload files of smaller size (several MB, but not GB).

Find the Small Files icon in the left-hand menu to open the Small Files
app. This will list all uploaded files and allow to upload or delete files.

[image: Small Files app]
Those files then can be accessed by the containers created. For this
to work, a dropdown menu of files uploaded to a project is provided
during container creation that allows to insert an internal
link to that file into the command field. This link can only be
accessed by containers that are associated running inside the same
project the files is associated with.

The intention is that the application running inside of the container
uses links to load the files anyway, and those links now can be replaced
with internal links to files that are uploaded to Kiosc. This also
requires the application inside the container to accept links as file
source, another way to provide the file is not possible.

For further description on how to use the app, please have a look at the
part in the SODAR Core manual [https://sodar-core.readthedocs.io/en/latest/app_filesfolders_usage.html].

When accessing the container form, the uploaded files are available
in a dropdown, and a link will be inserted into the command field
when Insert is clicked.

[image: File field in container form]

Overview

Contents

	Overview

	Containers

	Not in Kiosc

	Other Docker Entities

To access the administration interface for Kiosc containers (which
is not to confuse with the Django administration interface), click
on the user menu in the top right corner and choose Kiosc Admin.

[image: Kiosc administration overview]
This will open a page with three tabs: Containers, Not in Kiosc and Other Docker Entities.

Containers

This tab lists all available containers that were created in Kiosc, with their current status
and the control menu to adjust the status of the container, or delete it.

[image: Kiosc administration - Containers]

Not in Kiosc

This tab lists all running Docker containers that are not connected to a container object
in Kiosc. This is meant to list orphaned Docker containers, but it will also keep a list
of Docker containers that are part of the Kiosc server itself. They are grayed out.

[image: Kiosc administration - Not in Kiosc]

Other Docker Entities

This tab lists other Docker entitites that are not containers and comprises three lists, Docker networks, Docker volumes and Docker images.

Docker networks list among other the identifier and the connected containers as well as the subnet and gateway of the network.

[image: Kiosc administration - Other Docker Entities -]
Docker images list the identifier and the repository and tag name.

[image: Kiosc administration overview]
Docker volumes list the identifier and mountpoint.

[image: Kiosc administration overview]

Commands

Contents

	Commands

	Remove Stopped Containers

	Stop All Containers

	Stop Unused Containers

Remove Stopped Containers

Usage: python manage.py remove_stopped --remove

This command removes all of the stopped containers.
To prevent accidentally deleting containers, the --remove
parameter has to be provided. Omitting this parameter
only dry-runs the command.

Stop All Containers

Usage: python manage.py stop_all

This command sets all containers to exited status, no
matter their current state.

Stop Unused Containers

Usage: python manage.py stop_unused

This command stops all containers that haven’t been accessed
by the reverse proxy for a defined period of time (the parameter
can be set in the container object itself, but there is an upper
limit of 7 days).

Periodic Tasks

The user has no influence on periodic tasks, but
the periodic tasks in return influence the user experience.

They are designed to keep the Docker containers consistent
with the information the user enters into the web interface,
and to fetch logs and information from the Docker containers.

Contents

	Periodic Tasks

	Get logs and status from Docker container

	Synchronize Docker container state with last user action

	Stop inactive containers

	Synchronize with upstream SODAR instance (if configured)

Get logs and status from Docker container

Runs every 30 seconds.

This task fetches the logs that are provided by the Docker
container, which includes logs from whatever runs inside of the
Docker container. It also sets the Docker container status
in the container database object, which means that the Docker
container can change without the users intention (e.g. in case
the Docker container exists unexpectedly).

Synchronize Docker container state with last user action

Runs every minute.

This task synchronizes the last user action performed on the
container with the actual Docker container status if and only
if this information differs. For example, if the Docker container
exited for whatever reason but the last user action was to start
the container, the task tries to run the Docker container.

Stop inactive containers

Runs every day at 1:11am.

This task stops inactive containers that were not accessed by the
proxy for a defined period of time. This can be set by the user
for each container individually, but there is maximum of 7 days.
If the user omits the setting, it defaults to the 7 days maximum.

Synchronize with upstream SODAR instance (if configured)

Runs every five minutes.

This task synchronizes the projects and users with the upstream
SODAR instance. Only if this site is in target mode.

Overview

Requirements

A token is required to validate against the REST API. When logged in to Kiosc,
you can find the API Tokens link in your user dropdown menu in the top right corner of the site.
Select Create Token from the Token Operations dropdown to create a new token.
You will only see the token once, so make sure to copy it to clipboard at this point.
Deleting existing tokens can be done from the token list.

Legend

The token used in the following examples is 1234567890abcdef
but the generated token will be much longer.

The project SODAR UUID used in the following examples is 00000000-0000-0000-0000-000000000000.

The container SODAR UUID used in the following examples is cccccccc-cccc-cccc-cccc-cccccccccccc.

Containers

Contents

	Containers

	Create Container

	Delete Container

	List Containers

	Container Details

	Start Container

	Stop Container

Create Container

Create container in a project.

	URL

	/containers/api/create/<PROJECT_SODAR_UUID>

	Method

	POST

	Data type

	JSON dictionary

Example cURL:

curl -X POST -H "Content-Type: application/json" -H "Authorization: token 1234567890abcdef" --data '{"title": "Nginx echo headers", "repository": "brndnmtthws/nginx-echo-headers", "tag": "latest"}' https://kiosc.bihealth.org/containers/api/create/00000000-0000-0000-0000-000000000000

Delete Container

Delete container from a project given a container SODAR UUID.

	URL

	/containers/api/delete/<CONTAINER_SODAR_UUID>

	Method

	DELETE

Example cURL:

curl -X DELETE -H "Authorization: token 1234567890abcdef" http://kiosc.bihealth.org/containers/api/delete/cccccccc-cccc-cccc-cccc-cccccccccccc

List Containers

List all containers available in a project.

	URL

	/containers/api/<PROJECT_SODAR_UUID>

	Method

	GET

Example cURL:

curl -H "Authorization: token 1234567890abcdef" http://kiosc.bihealth.org/containers/api/00000000-0000-0000-0000-000000000000

Container Details

Show details and logs of a given container.

	URL

	/containers/api/detail/<CONTAINER_SODAR_UUID>

	Method

	GET

Example cURL:

curl -H "Authorization: token 1234567890abcdef" http://kiosc.bihealth.org/containers/api/detail/cccccccc-cccc-cccc-cccc-cccccccccccc

Start Container

Start a given container.

	URL

	/containers/api/start/<CONTAINER_SODAR_UUID>

	Method

	GET

Example cURL:

curl -H "Authorization: token 1234567890abcdef" http://kiosc.bihealth.org/containers/api/start/cccccccc-cccc-cccc-cccc-cccccccccccc

Stop Container

Stop a given container.

	URL

	/containers/api/stop/<CONTAINER_SODAR_UUID>

	Method

	GET

Example cURL:

curl -H "Authorization: token 1234567890abcdef" http://kiosc.bihealth.org/containers/api/stop/cccccccc-cccc-cccc-cccc-cccccccccccc

Index

 _images/menu1.png
Container
Temy

& <

Containers.

_images/menu2.png
Container
Templates

_images/logo.png
% kiosc Beta

_images/menu.png
admin

A Admin Alerts

Container Templates

© Kiosc Admin

@ Remote Site Access
& Site Background Jobs
1l Site Info

@ Site-Wide Events

APl Tokens

2 User Profile

% Django Admin

& Logout

_images/other_docker_entities_images.png
Docker images

D

sha256:db00b4541a8cd987e0b69d9335a49b284bf....

sha256:9c3a0a891e52f5680e13693cf7ad78a3151...

sha256:786df5f081af9abfc34a6cf31e2d97d53d22c...

sha256:4b615687ea3e055dac965057aba64b938c. ..

sha256:d7a0f776fc201e5d8h5a9cfc759841173e88...

sha256:25¢c18f76624c36f99de68c9Ibcbb30b2dc14f.

sha256:effb55a7fc0456d829d1f7a9284c6a094b65. .

sha256:2bd0edd01153938fc4733c8137945dc4bbs8....

sha256:9a84fe8f1cdfcbeffe617ff351c32e7454eb69...

sha256:aa4d65e670d6518e5da%cadd1a76370a9...

Repository

gher.io/bihealth/kiosc-server:main-0

ghcr.io/bihealth/kiosc-seapiper-demoriatest

ghcr.io/bihealth/kiosc-example-dash:main-0

gher.io/bihealth/kiosc-example-dash:master-0

ghcr.io/bihealth/kioscshinytest latest

gher.io/bihealth/kiosc-server:dev-0

ghcr.io/bihealth/docker-shiny-example:1-0

redis:6

_images/other_docker_entities_networks.png
Ll Search term Search

Containers Not in Kiosc Other Docker Entities

Docker networks

D Name Driver ~ Containers Subnet Gateway
3920807db8d3e58ed... bridge bridge No containers 172.17.00116 172.17.0.1
0705bd4b78fc117c3... host host No containers No subnet No
gateway
61668ecac768e5005... kiosc-docker-compose_kiosc- bridge Kiosc-docker-compose_kiosc-celerybeat_1 172.18.00/16 172.18.0.1
public 1721806116
Kiosc-docker-compose_kiosc-celeryd-default_1
172180716

Kiosc-docker-compose_postgres_1 1721804116
Kiosc-docker-compose_kiosc-web_1 172.16.05/16
Kiosc-docker-compose_traefik 1 1721802116
Kiosc-docker-compose_redis_1 1721603116

6falf8de3ac5294cdfe... none nul No containers No subnet No
gateway

91c0a0f5d5716h98f1. Kiosc-net bridge kiosc-docker-compose._kiosc-web_1

172.29.0.0/16 172.29.0.1

_images/menu3.png
Small
Files

_images/not_in_kiosc.png
Ll Search term Search

Kiosc Administrator

Containers Not in Kiosc Other Docker Entities

Docker Containers not present in Kiosc

D Name Image

05fad46cc6923d7860... kiosc-docker-compose_kiosc-celeryd- gher.io/bihealth/kiosc-server:main-0
default_1

0563507acd4cae6f57... kiosc-docker-compose_kiosc- ghcr.io/bihealth/kiosc-server:main-0

celerybeat_1

65c3524af90f526d7fa... kiosc-docker-compose_kiosc-web_1 gher.io/bihealth/kiosc-server:main-0

90da5edc672204fd5b... kiosc-docker-compose_traefik_1 traefikv2.3.1
ac0a5780b40f2ff00al... kiosc-docker-compose_redis_1 redis:6
4c981e465020516ael... kiosc-docker-compose_postgres_1 postgres:12

eclba684a5d842e99... eloguent_ellis sha256:786df5f081af9abfc34a6cf31e2d97d53d22c3b9ccae483alfcd7da0da255286

_images/other_docker_entities_volumes.png
Docker volumes
Name

008e2184010dec873c1.

1dd6d4e2399ad5e4b85c...

659957e74c24a96b565d...

6dc49770784dd11dfe49...

bc21decc97593598¢906...

6815d13158e4d38607d.

Ofea814e291d6eelaac9. ..

4ecd5cc433691bd48a65. ..

534c6db8510aec9d1625...

839855b5499fe60e3a52.

8b29b0981f2020232adb. ..

Mountpoint

Ivarflib/docker/volumes/008e2184010dec873c12ade13b842062eb995d7cflce9adfaedaefc553548dde/_data

Ivarflib/docker/volumes/1dd6d4e2399ad5e4b85c5858e36¢7b5d55cc4b4aab8bd391369d153e1b7812cc/_data

Ivarflib/docker/volumes/659957e74c24a96b565d338a39a461918ca859266fc273ab8478c09341b9c253/_data

Ivarflib/docker/volumes/6dc49770784dd11dfe492c29c82c667d84e7280fdeb24cfd9acfbee2d64180e4/_data

Ivarflib/docker/volumes/bc21decc97593598c9060a0492411d27316c47a1332543505b332ff3853b9ch/_data

Ivarflib/docker/volumes/f6815d13158e4d38607d92bcc7c874cd16b9cd7df945a09133690f3a4122724d/_data

Ivarflib/docker/volumes/Ofea814e291d6ee0aac981ab44017670e7eb7calc6a66f25580235535d170ca2/_data

Ivarflib/docker/volumes/4ecd5cc433691bd48a65e5d3a121a7505d50aa3cf2560980df3212218b872ef3/_data

Ivarflib/docker/volumes/534c6db8510aec9d16259badb08b1e3c9f820e91al6ba7db285a7689f45a12b5/_data

Ivarflib/docker/volumes/839855h5499fe60e3a5249c47a3e84369d049154689d4aa02118333f1fe039bc/_data

Ivarlib/docker/volumes/8b29b0981f2020232adb6e931100c1210515bac5756fech9c8460470ca8a7h20/_data

_images/overview_copied.png
- T

Home / TestCategory / TestProject

Successfully created container template "Nginx Example site-wide (Copy)' from 'Nginx Example site-wide" x

TestProject ¢

e Container Temp|ate5 project-wide [Site-wide] Nginx Example site-wide (brndnmithws/i v
pat
Title Repository:Tag Date Created
: brndnmtthws/nginx-echo-headers:latest Nov. 3, 2021, 4:49 p.m. m
ghcr.iofbihealth/kioscshinytest:latest Nov. 3, 2021, 12:19 p.m. [o -]

_images/overview_created.png
t kose - T

Home / TestCategory / TestProject

TestProject ¢

Container Templates project-wide [Site-wide] Nginx Example site-wide (brndnmtthws/i v

Pl Title Repository:Tag Date Created

ghcr.io/bihealth/kioscshinytest:latest Nov. 3, 2021, 12:19 p.m. m

_images/overview_duplicated.png
- T

Home / TestCategory / TestProject

Successfully created container template 'Shiny example (Duplicate)’ from 'Shiny example’ x

TestProject ¢

= Container Templates project-wide [Site-wide] Nginx Example site-wide (brndnmtthws/i v

Title Repository:Tag Date Created

: ghcr.io/bihealth/kioscshinytestlatest Nov. 3, 2021, 4:49 p.m. m

ghcr.io/bihealth/kioscshinytest:latest Nov. 3, 2021, 12:19 p.m.

nav.xhtml

 Table of Contents

 		
 Welcome to the Kiosc documentation!

_images/overview_create.png
& ose - T

Home / TestCategory / TestProject

TestProject ¢

No containers yet

_images/overview_create1.png
& ose - T

Home / TestCategory / TestProject

TestProject ¢

Container Templates project-wide [Site-wide] Nginx Example site-wide (brndnmtthws/i v D

No container templates yet.

_images/proxy_cellxgene.png
[cellxgene

leiden >

louvain >

phme3k | @

1:0cells | 2:0cells m

umap: 2638 out of 2638 cells

o

Al saved

Autosuggest genes Bulk add genes

500

2,000

1000 1,500 2,000

n_genes_by_counts

7
logp_n_genes_by.counts

4000 6000
total_counts

8,000

300
200
100

300

200
100

300
200
100

200

_images/proxy_dash.png
Threshold value

1

Manhattan Plot

. Poin(s) of inerest
1 . o
. cnz
. o3
. cna
. cms
. cns
. ont
. cne
. cho
« cnio
« ch1
o cnz
« cns

-log10(p)

Chromosome

_images/overview_empty.png
t kose - T

Home / TestCategory / TestProject

TestProject ¢

Container Templates project-wide [Site-wide] Nginx Example site-wide (brndnmtthws/i v

et No container templates yet.

_images/project_overview.png
Home / TestCategory

) TestProject 5¢

R ReadMe

No ReadMe is currently set for this project. You can update the ReadMe here.

il Container Templates overview (]
Title Repository:Tag
& Containers overview o
Title Repository:Tag State
B Small Files Overview o
Name Size Description Owner Updated

No files or links

@ Timeline Overview o

_images/controls_button_list.png

_images/controls_menu.png
Update
(@ Duplicate

X Delete

_images/containers.png
Ll Search term Search

Kiosc Administrator

Containers Not in Kiosc Other Docker Entities
Complete Container List
Project / Title Repository:Tag Date Created State

TestProject / Shiny example gher.io/bihealth/kioscshinytest:latest Nov. 2, 2021, 7:16 p.m. running @ &~

_images/proxy_not_running.png

_images/controls_button_details.png
% Controls ~

_images/controls_menu_running.png
= Stop
Il Pause
© Restart
Update

X Delete

_images/overview_copy.png
Home / TestCategory / TestProject

TestProject ¢

Container Templates project-wide [Site-wide] Nginx Example site-wide (brndnmtthws/i v

et No container templates yet.

_images/controls_menu_stopped.png
» Start
Update

X Delete

_images/settings_menu.png
randomuser

9 Site-Wide Events
 API Tokens

User Profile

& Logout

_images/create1.png
Home / TestCategory / TestProject

TestProject v

Create Docker container

Container Template [Site-wide] Nginx Example site-wide (brndnmtthws/nginx-echo-headers:latest)

Title*

Shiny example

Tite ofthe contalner.
Description

This is an example container running a simple Shiny app.

_images/proxy_seapiper.png
seaPiper Example dataset

Gene table @
Search:
Contrast
covin1s - > PrimarylD ENSEMBL SYMBOL ENTREZID REFSEQ GENENAME baseM
et oNA
Filter Direction 1 [enscoooooairar 0131 topoisomerase 2
amy v alpha
Filter by
abs(LFC) non-stc
condensin|
5 2 ENSGO0000109805 ENSG N NM_02234
o5 = a complex subunit
G
Filter by FOR
3 1t
005 & s [enscoooooosasos Ensc oce NM cetldision 1
cycles
cickonthe [buttons to view abnormal
an expression profile spindle
o s s [enscoooonosezrs ASPM s P 1
microtubule
assembly
BUBL mitotic
checkpoint
5 ENSGO0000169679 ENSG BUBL s] 1
a <anereoine
kinase
Showing 1to 5 of 305 entries Previous 2 3 4 5 . 6l Next
Gene info
X covariate k data points by o
o

_images/proxy_shiny.png
Shiny example

Dataset iris
.
X covariate °
Sepal.Length - . i
10- -
Y covariate o __ o
Sepal.Width - * Sl SN 5
B R s
H
Color by i olgo __% .
NA - S | “Too oo
Symbol by $%s5 8 0
NA - 5 o g

Trellis (facet) by

NA M SepalLengin

_images/create21.png
The tag of the image.

Max retries

5

Maximal number o reres for an acton in case of faiure
Inactivity threshold

7

Number of days the container is allowed to run without proxy access.

Set the content for your footer in include/_footer.html. KIOSC v0.1.0 / SODAR Core v0.10.5+10.g36ed460

_static/minus.png

_images/create3.png
The command to execute

Set the content for your footer in include/_footer.html. KIOSC v0.1.0 / SODAR Core v0.10.5+10.g36ed460

_static/plus.png

_images/create11.png
Home / TestCategory / TestProject

TestProject v

Create container template

Title*

Shiny example

Tite of the contaner template.
Description

This is an example template for a Shiny container.

_images/create2.png
Repository*

gher.iolbihealth/kioscshinytest

‘The repositoryiname of the image.
Tag*

latest

The tag of the image.
Container port*

8080

©

Server port within the container

Container path

_static/file.png

_images/details.png
Home / TestCategory / TestProject

TestProject v

Container Template shiny example

Description

This is an example template for a Shiny container.

Details
SODAR UUID 73e188e3-7711-4b6d-9a74-5ec83552da3e
Date Created 2021-11-03 12:19
Date Modified 2021-11-03 12:19
Repository:Tag ghcr.io/bihealth/kioscshinytest:latest
Container Port 80

Container Path no value

_images/details_created1.png
KlOsC

Home / TestCategory / TestProject

LWl search term Search

TestProject v

Container shiny example

Description

This is an example container running a simple Shiny app.

Details

SODAR UUID
Date Created
Date Modified
Image ID

Container ID

Repository:Tag

Container IP

Container Port

Container Path

34c33253-3285-4797-9f92-effac26e09al
2021-10-26 19:20
2021-10-26 19:20

no value

gheriolbihealth/kioscshinytest latest

8080

no value

_images/delete_confirm.png
KIOSC B

Home / TestCategory / TestProject

TestProject ¢

Confirm Container Deletion

Warning: Are you sure you want to delete this container? This can not be undone!

The selected container was created on 2021-11-02 19:16

Cancel X Delete

_images/delete_confirm1.png
} Kiosc Beta

Home / TestCategory / TestProject

TestProject ¢

Confirm project-wide ContainerTemplate Deletion

Warning: Are you sure you want to delete this container template? This can not be undone!

The selected container was created on 2021-11-03 16:49

Cancel X Delete

_images/proxy_running.png
© View

_images/proxy_scelvis.png
4 SCelVis Home

SCelVis

SCelVis is a web app for the visualization and interactive exploration of single-cell transcriptomic data.
Quickstart

« Start by selecting the dataset you want to work with from the Go To menu on the top right

« check out our Documentation, in particular the Tutorial, or the movie on our github page

« if you find SCelVis useful for your research, please consider citing our paper

Main user interface

select plot type -

® scatter plot s
violin plot
boxplot

barplot

wwee] @

select xaxis

Tsne2

TSNET
select y axis

TSNE2 X~
select coloring

orig_ident X~

_images/details_running1.png
t kose - T

Home / TestCategory / TestProject

TestProject ¢

Container shiny example

Description

_images/details_running2.png
% kiosc B Search

Home / TestCategory / TestProject

Environment Secret Keys 10 value
Max Retries 5
Inactivity Threshold [days] 7

State

Last action start (0/5)

INFO admin] (Object) Created
INFO admin] (Action) Start

1 INFO admin] (Task) Pulling image .

2 INFO admin] (Docker) Pulling from bihealth/kioscshinytest

2 INFO admin] (Docker) Digest: sha256:dc7a762575a8260eb01d52de2168dd8ae979bC658c7b7a3d006735207bcad033

2 INFO admin] (Docker) Status: Image is up to date for ghcr.io/bihealth/kioscshinytest:latest
2 INFO admin] (Task) Pulling image succeeded
2 INFO admin] (Task)
admin] (Task) Starting succeede
anonymous] (Docker)
5 INFO anonymous] (Docker) Listening on http://0.0.0

_images/details_created2.png
W KIOSC Be

Home / TestCategory / TestPr

Command no value
Environment <
“dataset": "iris",
“title": "Kiosc Shiny App example
3
Environment Secret Keys no value
Max Retries 5
s Inactivity Threshold [days] 7
State initial

Logs

[2021 6 19:20:42 INFO admin] (Object) Created

_images/file.png
Files /pbmc3k.hSad

_images/file_insert.png
Files /pbmc3k.hSad

Command

cellxgene launch]-p 8050 ~host 0.0.0.0 ~verbose

_images/details_running3.png
Home / TestCategory / TestProject

Inactivity Threshold [days]
State

Last action start (0/5)

Logs

[4
Containers
[2021-10-26 19: adnin] (Docker) Pulling from binhealth/kioscshinytest
[2021-10-26 19: admin] (Docker) Digest: sha256:dc7a762575a8260eb010520e2168d08a2979bc658C77a30006735207bcad03s
[2021-10-26 19: admin] (Docker) Status: Image is up to date for ghcr.io/bihealth/kioscshinytest:latest
[2021-10-26 19: admin] (Task) Pulling image succeeded
[2021-10-26 19: admin] (Task) Starting
[2021-10-26 19: admin] (Task) Starting succeeded
[2021-10-26 19: anonymous] (Docker)
[2021-10-26 19: anonymous] (Docker) Listening on http://0.0.0.0:8080
|2021-10-26 19: admin (Proxy) Accessing hEtp://ecyszsTZbdba:Buso
[2021-10-26 19: admin] (Proxy) Accessing http://ec9525f2bdsa:B080
[2021-10-26 19: admin] (Proxy) Accessing http://ec9525f2bdsa:B080
[2021-10-26 19: admin] (Proxy) Accessing http://ec9525f2bdsa:B080
[2021-10-26 19: admin] (Proxy) Accessing http://ec9525f2bdsa:B080
[2021-10-26 19: admin] (Proxy) Accessing http://ec9525f2bdsa:B080
[2021-10-26 19: admin] (Proxy) Accessing http://ec9525f2bdsa:B080
[2021-10-26 19: admin] (Proxy) Accessing http://ec9525f2bdsa:B080
[2021-10-26 19: admin] (Proxy) Accessing http://ec9525f2bdsa:B080
[2021-10-26 19: admin] (Proxy) Accessing http://ec9525f2bdsa:B080
[2021-10-26 19: admin] (Proxy) Accessing http://ec9525f2bdsa:B080

_images/details_starting.png
W KIOSC Beta Search

Home / TestCategory / TestProject

TestProject ¢

Container shiny example

© Container List

» Start
Update

X Delete

Description

_images/login.png
KIOSC

Login

Please log in.
user

_images/file_inserted.png
Files /pbmc3k.hSad v

Command

celixgene launchfnttp:/ikiosc-web:8080/containersfile/serve/424e4362-01b8-fe!
b24C 1262014T143C/pbmc3k.hbad] p 8050 --host 0.0. erbose

_images/home.png
Ll Search term Search

Home

® Available Projects Filter

Project | Category Your Role

<+ TestCategory, Superuser

© TestProject Superuser

